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Hierarchic trees with branching number close to one: Noiseless Kardar-Parisi-Zhang equation
with additional linear term for imitating two-dimensional and three-dimensional phase transitions
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An imitation of two-dimensiona(2D) field theory is formulated by means of a model on the hierarchic tree
(with branching number close to oneith the same potential and the free correlators identical to 2D correlator
ones. Such a model carries on some features of the original model for certain scale invariant theories. The
renormalization group equation for the free energy is the noiseless Kardar-Parisi-Zhang equation with an
additional linear term.
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Usually one understands the universality of phase transirkandom energy modéREM) [2—4]. In Ref.[5] a relation of
tion considering different Hamiltonians in the same space. the 2D quantum Liouville model to the REM and to the
We propose to follow another path: by keeping the Hamil-directed polymer on the Cayley tree was established.
tonian fixed to simplify the space geometry as much as pos- Our present analysis shows that the connection with the
sible retaining two point correlators and three pdfot isos- REM is not a specific feature of the Liouville model and
celes trianglescorrelators. works well also for other conformal models. Moreover, using
There is a precedent of such a situati@anmodel in sim- similar ideas we intend to construct general 2D quantum
plified space holds some features of a model in ordinarymodels in the ultrametric space and thereby generalize the
spacg. In his papef1], Baxter observed that the equations of above-mentioned connection between the quantum field the-
free energy in the two-dimensionéD) Ising model with  oretical models and those defined on the hierarchical lattices.
anisotropic couplings are similar to those in the Bethe lattice Let us consider a hierarchic tree with the branching num-
(while critical indices are different In this work we are berg. We begin with integer, then continue the obtained
going to look for a similar situation for field theoretical mod- expressions analytically to the poigt—1. Instead ofd-d
els. Euclidean space now we hagg end points, wher is a
If the action of original theory consists of the Laplacian number of hierarchic levels. First we define the fiefd®n
and a potential, our model experiences the space dimensidranches of a tree. The fieltl at the end poink is defined as
through the behavior of the Green function

1 $O)=fo+ 20 1. &)
G(X,X,)N—m, d#2 and
r(x,x')4? o . .
The summation in Eq(3) is made along the trajectory of
pointx, connecting it with the origin of the tree. We define
G(x,x")~In . d=2. (1)  atthe hierarchy level as
r(x,x")
iv
The total volume is V=R (4)
E ‘ Now determine the kinematic part of the action for the field
al a0

where L and a are the infrared and ultraviolet cutoffs, K )

r(x,x") is the distance. The Euclidean geometry contains too - 2 Wf(v’l) ' ®)
much construction. One can rotate a point around some cen-

ter and write out a close circle. Let us now consider someThen the partition under the potentid( ¢) is

metric space with the following propertigs) For every pair

of points there is a distanaggx,x"). (b) We have some mea- vk=V )
sure at every pointlug(x) with the total measure dus f df exp — _E oy fh7rex _; U(e(X)) -
=RY. (c) One can construct a quadratic form with corre- vt ©6)

sponding asymptotickl) for the Green function.
We are going to construct statistical mechanics models ojye have for the correlator
the simplest space, which supports poitas-(c). We hope
that due to the universality these models will acquire some (p(x)p(X"))=V—v. Y
properties of models id-dimensional space. To realize this
program we will use certain ideas from the theory of theFor usual 2D models with
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After the replacemeniv=exg —u(t,x)] we arrive at

f d¢od¢exq’—idxzv¢(x)z]exp[—f de(¢(x))],
8 du 1

1
8 T AuU-= 2
8 4 = 2Au—5(Vwitu,

the total surface area is equalR3, and the correlators read
X< —oox<oo, O=sv=sV, u(0x)=U(x), (15
L2
(¢(x)¢(x’))=ln—2. (99  whereU(x) is a potential in Eq(8). The dimensiom of the
r space where this equation is formulated is equal to the num-
ber of different fieldsg(x) in Eqg. (8). Having an expression

It is possible to take-component fields in E(8) instead of for u(v,x) we obtain for the free energy

the one-component fielg(x).
We can determine the distance from the equality InZ=—u(V,0). (16)

=In r2 Then our correlatof7) coincides with the 2D one

(9). For the free energy(v,x) we have the noiseless Kardar-
What is the advantage of representatiéi? We are in a  Parisi-Zhang equatiofl5) with an additional linear term. It

position to calculate the partition function by means of itera-is easy to find several solutiofiggs.(14) and(15)].

tions. This is well known for models on hierarchical lattices  When there is no dependence fram

[1]. Let us take some large numbiérand derive

K ® K )
I1(x)= mﬁxex ~5yY —U(x+y)

u(v,x)=constexgpv). 17

dy, If at the boundary =0 the potentiald (x) = x?, then it holds
such a form for any value af,

Ko~ K u(v,x)= +x2 . 18
i (X)= \/—szf_weXp{ —WyZ][u(anqdy, (0.3)= Golv) + X (0) 18
For the case of discrete moddléke Ising or Pott on a

Z=lim [1(0)]9 (10) hierarchig lattice the stable points of iterati_on equations give

K— o0 the solution of the problem. In our case it has a narrower

meaning [there is another interesting situation, when
As for the determination of the partition function, we need~ 1/exp{V)]:
only Eq.(10) and we can define our model for any value of

g consideration of the analytical continuation of EfQ). Let ) ) L
us consider the limit First the static solution is

q—1, K—w» qK:eV_ (12) w(v,x)=1, u(v,x)=0. (19

Using the small factor d—1), it is possible to introduce The next one is

continuous measuresu, ,du;, construct perturbative field B _

theory on this ultrametric space, and calculate diagrams. In W(v,x)=0, u(v,x)=c. (20
reality we need expressions for the propoga®r as well as
the total volume measure inside the sphere with maxim
hierarchic distance given by the equality

t is possible to find other real solutions. We have an even
olutionu(x) =u(—x), where the potential is finite only in
the finite interval,

J duy=e’—1. (12)

> dz
u=co, —oo<x<—f ,
20\/1+2z+ c exp(22)
For finite or large values aff considered i3] and[4] it is

impossible(or too difficult) to define the perturbative regime. 1+2z5+c exp(2zy) =0. (21
Let us consider carefully Eq10) at the limit (11). We
introduce a variablev(v,x) =1«,(X) and consider the limit Outside that interval there is a nontrivial dependence be-
V/IK<1. For the differentiatlv we have the expressionK.  tweenu andx,
Let us also take

o dz
V X= _f y
1= =dv. (13 u 1422+ c exp22)
Using expressiox~x[1+Inx(q—1)] it is easy to obtain *=U=2
dw 1 f“’ dz
= Z 0>x>— . 22
do winw-+ ZAW' (14) 20\1+2z+ c exp(22) (22
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wherel is the maximal distance in the modghe infrared

Let us use the same approach for the cast>e?. For the  cutoff). We should solve the equation like Ed.5):
volume ind-d space one has a“. If we identify it with our

q-, then we derivea=q*, The fieldsf, are defined on the du 1 1 2,
branches of the treéq, T, at the origin. Let us define the free do 2¢ exfav]au 2 (Vu+u,
field action:
u(0x)=U(x). (26)

</)(x):f0+f1+2I f(v,0).

(23)  We have given a simplified, approximate method for the 2D

field theoretical models and derived a different version of the

The summation in Eq24) is along the trajectory of point. ~ Kolmogorov equation. We hope that the bulk structure, the
Now determine the kinematic part of the action for the fieldtwo and three point correlatoffor isosceles trianglgsn our

(),
A= 3 f%-I-EI exp(—av)f(v,1)? al.

If one takesa=(d—2)/d for the combined field, then

L(d=2)

r(x,x’)’

(p(X)b(X'))=explav)~

approach, are the same as in 2D models.
It is possible to check the equivalence of models on our
trees with some segment dfd field theory by means of

(24 direct numerical calculation of Eq§l4) and(27) for a field

version of the 3D Ising model.
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