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Hierarchic trees with branching number close to one: Noiseless Kardar-Parisi-Zhang equation
with additional linear term for imitating two-dimensional and three-dimensional phase transitions

D. B. Saakian
Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375036, Armenia

~Received 25 October 2001; published 28 June 2002!

An imitation of two-dimensional~2D! field theory is formulated by means of a model on the hierarchic tree
~with branching number close to one! with the same potential and the free correlators identical to 2D correlator
ones. Such a model carries on some features of the original model for certain scale invariant theories. The
renormalization group equation for the free energy is the noiseless Kardar-Parisi-Zhang equation with an
additional linear term.
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Usually one understands the universality of phase tra
tion considering different Hamiltonians in the same spac

We propose to follow another path: by keeping the Ham
tonian fixed to simplify the space geometry as much as p
sible retaining two point correlators and three point~for isos-
celes triangles! correlators.

There is a precedent of such a situation~a model in sim-
plified space holds some features of a model in ordin
space!. In his paper@1#, Baxter observed that the equations
free energy in the two-dimensional~2D! Ising model with
anisotropic couplings are similar to those in the Bethe lat
~while critical indices are different!. In this work we are
going to look for a similar situation for field theoretical mo
els.

If the action of original theory consists of the Laplacia
and a potential, our model experiences the space dimen
through the behavior of the Green function

G~x,x8!;
1

r ~x,x8!d22
, dÞ2 and

G~x,x8!; ln
1

r ~x,x8!
, d52. ~1!

The total volume is

S L

aD d

, ~2!

where L and a are the infrared and ultraviolet cutoffs
r (x,x8) is the distance. The Euclidean geometry contains
much construction. One can rotate a point around some
ter and write out a close circle. Let us now consider so
metric space with the following properties:~a! For every pair
of points there is a distancer (x,x8). ~b! We have some mea
sure at every pointdms(x) with the total measure*dms
5Rd. ~c! One can construct a quadratic form with corr
sponding asymptotics~1! for the Green function.

We are going to construct statistical mechanics models
the simplest space, which supports points~a!–~c!. We hope
that due to the universality these models will acquire so
properties of models ind-dimensional space. To realize th
program we will use certain ideas from the theory of t
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random energy model~REM! @2–4#. In Ref. @5# a relation of
the 2D quantum Liouville model to the REM and to th
directed polymer on the Cayley tree was established.

Our present analysis shows that the connection with
REM is not a specific feature of the Liouville model an
works well also for other conformal models. Moreover, usi
similar ideas we intend to construct general 2D quant
models in the ultrametric space and thereby generalize
above-mentioned connection between the quantum field
oretical models and those defined on the hierarchical latti

Let us consider a hierarchic tree with the branching nu
ber q. We begin with integerq, then continue the obtaine
expressions analytically to the pointq→1. Instead ofd-d
Euclidean space now we haveqK end points, whereK is a
number of hierarchic levels. First we define the fieldsf l on
branches of a tree. The fieldf at the end pointx is defined as

f~x!5 f 01(
l

f l . ~3!

The summation in Eq.~3! is made along the trajectory o
point x, connecting it with the origin of the tree. We definev
at the hierarchy levelj as

v5
jV

K
. ~4!

Now determine the kinematic part of the action for the fie
f(x)

2(
K

2V
f ~v,l !2. ~5!

Then the partition under the potentialU(f) is

E d f expH 2 (
v5v1

vK[V
K

2V
f ~v,l !2J expH 2(

x
U„f~x!…J .

~6!

We have for the correlator

^f~x!f~x8!&5V2v. ~7!

For usual 2D models with
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E df0df expH 2
1

8p
dx2¹f~x!2J expH 2E dxU„f~x!…J ,

~8!

the total surface area is equal toR2, and the correlators rea

^f~x!f~x8!&5 ln
L2

r 2
. ~9!

It is possible to taken-component fields in Eq.~8! instead of
the one-component fieldf(x).

We can determine the distance from the equalityv
5 ln r2. Then our correlator~7! coincides with the 2D one
~9!.

What is the advantage of representation~6!? We are in a
position to calculate the partition function by means of ite
tions. This is well known for models on hierarchical lattic
@1#. Let us take some large numberK and derive

I 1~x!5A K

2VpE2`

`

expH 2
K

2V
y22U~x1y!J dy,

I i 11~x!5A K

2VpE2`

`

expH 2
K

2V
y2J @ I i~x1y!#qdy,

Z5 lim
K→`

@ I K~0!#q. ~10!

As for the determination of the partition function, we ne
only Eq. ~10! and we can define our model for any value
q consideration of the analytical continuation of Eq.~10!. Let
us consider the limit

q→1, K→` qK5eV. ~11!

Using the small factor (q21), it is possible to introduce
continuous measuresdmx ,dm l , construct perturbative field
theory on this ultrametric space, and calculate diagrams
reality we need expressions for the propogator~7!, as well as
the total volume measure inside the sphere with maxi
hierarchic distancev given by the equality

E dmx5ev21. ~12!

For finite or large values ofq considered in@3# and @4# it is
impossible~or too difficult! to define the perturbative regime

Let us consider carefully Eq.~10! at the limit ~11!. We
introduce a variablew(v,x)5I Kv/V(x) and consider the limit
V/K!1. For the differentialdv we have the expressionV/K.
Let us also take

q215
V

K
[dv. ~13!

Using expressionxq'x@11 ln x(q21)# it is easy to obtain

dw

dv
5wln w1

1

2
Dw. ~14!
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After the replacementw5exp@2u(t,x)# we arrive at

du

dv
5

1

2
Du2

1

2
~¹u!21u,

x,2`x,`, 0<v<V, u~0,x!5U~x!, ~15!

whereU(x) is a potential in Eq.~8!. The dimensionn of the
space where this equation is formulated is equal to the n
ber of different fieldsf(x) in Eq. ~8!. Having an expression
for u(v,x) we obtain for the free energy

ln Z52u~V,0!. ~16!

For the free energyu(v,x) we have the noiseless Karda
Parisi-Zhang equation~15! with an additional linear term. It
is easy to find several solutions@Eqs.~14! and ~15!#.

When there is no dependence fromx,

u~v,x!5const exp~v !. ~17!

If at the boundaryv50 the potentialU(x)5x2, then it holds
such a form for any value ofv,

u~v,x!5f0~v !1x2f1~v !. ~18!

For the case of discrete models~like Ising or Potts! on a
hierarchic lattice the stable points of iteration equations g
the solution of the problem. In our case it has a narrow
meaning @there is another interesting situation, whe
;1/exp(V)#:

First the static solution is

w~v,x!51, u~v,x!50. ~19!

The next one is

w~v,x!50, u~v,x!5`. ~20!

It is possible to find other real solutions. We have an ev
solution u(x)5u(2x), where the potential is finite only in
the finite interval,

u5`, 2`,x,2E
z0

` dz

A112z1c exp~2z!
,

112z01c exp~2z0!50. ~21!

Outside that interval there is a nontrivial dependence
tweenu andx,

x52E
u

` dz

A112z1c exp~2z!
,

`.u.z0

0.x.2E
z0

` dz

A112z1c exp~2z!
. ~22!
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Herec is some positive constant.
Let us use the same approach for the case ofd.2. For the

volume ind-d space one has;ad. If we identify it with our
qL, then we derivea5q(1/d)L. The fieldsf l are defined on the
branches of the tree,f 0 , f 1 at the origin. Let us define the fre
field action:

f~x!5 f 01 f 11(
v l

f ~v,l !. ~23!

The summation in Eq.~24! is along the trajectory of pointX.
Now determine the kinematic part of the action for the fie
f(x),

A5 1
2 F f 1

21(
v l

exp~2av ! f ~v,l !2/aG . ~24!

If one takesa5(d22)/d for the combined field, then

^f~x!f~x8!&5exp~av !;
L (d22)

r ~x,x8!
, ~25!
cs

06710
whereL is the maximal distance in the model~the infrared
cutoff!. We should solve the equation like Eq.~15!:

du

dv
5

1

2
a exp@av#Du2

1

2
~“u!21u,

u~0,x!5U~x!. ~26!

We have given a simplified, approximate method for the
field theoretical models and derived a different version of
Kolmogorov equation. We hope that the bulk structure,
two and three point correlators~for isosceles triangles! in our
approach, are the same as in 2D models.

It is possible to check the equivalence of models on
trees with some segment ofd-d field theory by means of
direct numerical calculation of Eqs.~14! and~27! for a field
version of the 3D Ising model.
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